业务上用redis做缓存,mysql做数据存储,如何保证数据一致性呢?

在这种场景上,redis一般有两种场景:

  1. 只读缓存:数据写入数据库,同时删除缓存。缓存只用来读。
  2. 读写缓存:数据写入数据库,同时更新缓存。缓存同时处理读和写。

只读缓存

出现不一致的场景
1.先更新数据库,再删除缓存:如果数据库更新成功,缓存删除失败,此时数据库是新值,缓存是旧值。数据不一致。
2.先删除缓存,再更新数据库:在并发下会出现不一致问题。如,线程A删除了缓存,还没更新数据库;此时,线程B读取缓存,发现缓存缺失,会出现两个问题:

  1. 线程B读到旧值。
  2. 线程B从DB读到旧值,并且写入缓存,导致其他线程读到旧值。
    等线程B更新完缓存,线程A又更新完DB,此时出现数据不一致。

解决方案

  1. 先更新db,再删除缓存:重试机制。
    借助消息队列的重试机制,将删除缓存放到消息队列中执行。这种情况可以最大程度保证最终一致性,当重试都失败了、高并发场景下还是会出现不一致。
  2. 先删除缓存,再更新db:在线程 A 更新完数据库值以后,我们可以让它先 sleep 一小段时间,再进行一次缓存删除操作
    之所以要加上 sleep 的这段时间,就是为了让线程 B 能够先从数据库读取数据,再把缺失的数据写入缓存,然后,线程 A 再进行删除。所以,线程 A sleep 的时间,就需要大于线程 B 读取数据再写入缓存的时间。这个时间怎么确定呢?建议你在业务程序运行的时候,统计下线程读数据和写缓存的操作时间,以此为基础来进行估算。

这样一来,其它线程读取数据时,会发现缓存缺失,所以会从数据库中读取最新值。因为这个方案会在第一次删除缓存值后,延迟一段时间再次进行删除,所以我们也把它叫做“延迟双删”。


redis.delKey(X)
db.update(X)
Thread.sleep(N)
redis.delKey(X)

读写缓存

问题:

  1. 先更新db,再更新缓存:如果更新数据库成功,但缓存更新失败,此时数据库中是最新值,但缓存中是旧值,后续的读请求会直接命中缓存,得到的是旧值。
  2. 先更新缓存,再更新数据库:如果更新缓存成功,但数据库更新失败,此时缓存中是最新值,数据库中是旧值,后续读请求会直接命中缓存,但得到的是最新值,短期对业务影响不大。但是,一旦缓存过期或者满容后被淘汰,读请求就会从数据库中重新加载旧值到缓存中,之后的读请求会从缓存中得到旧值,对业务产生影响。

同样地,针对这种其中一个操作可能失败的情况,也可以使用重试机制解决,把第二步操作放入到消息队列中,消费者从消息队列取出消息,再更新缓存或数据库,成功后把消息从消息队列删除,否则进行重试,以此达到数据库和缓存的最终一致。

以上是没有并发请求的情况。如果存在并发读写,也会产生不一致,分为以下4种场景。

  1. 先更新数据库,再更新缓存,写+读并发:线程A先更新数据库,之后线程B读取数据,此时线程B会命中缓存,读取到旧值,之后线程A更新缓存成功,后续的读请求会命中缓存得到最新值。这种场景下,线程A未更新完缓存之前,在这期间的读请求会短暂读到旧值,对业务短暂影响。
  2. 先更新缓存,再更新数据库,写+读并发:线程A先更新缓存成功,之后线程B读取数据,此时线程B命中缓存,读取到最新值后返回,之后线程A更新数据库成功。这种场景下,虽然线程A还未更新完数据库,数据库会与缓存存在短暂不一致,但在这之前进来的读请求都能直接命中缓存,获取到最新值,所以对业务没影响。
  3. 先更新数据库,再更新缓存,写+写并发:线程A和线程B同时更新同一条数据,更新数据库的顺序是先A后B,但更新缓存时顺序是先B后A,这会导致数据库和缓存的不一致。
  4. 先更新缓存,再更新数据库,写+写并发:与场景3类似,线程A和线程B同时更新同一条数据,更新缓存的顺序是先A后B,但是更新数据库的顺序是先B后A,这也会导致数据库和缓存的不一致。

场景1和2对业务影响较小,场景3和4会造成数据库和缓存不一致,影响较大。也就是说,在读写缓存模式下,写+读并发对业务的影响较小,而写+写并发时,会造成数据库和缓存的不一致。

针对场景3和4的解决方案是,对于写请求,需要配合分布式锁使用。写请求进来时,针对同一个资源的修改操作,先加分布式锁,这样同一时间只允许一个线程去更新数据库和缓存,没有拿到锁的线程把操作放入到队列中,延时处理。用这种方式保证多个线程操作同一资源的顺序性,以此保证一致性。

综上,使用读写缓存同时操作数据库和缓存时,因为其中一个操作失败导致不一致的问题,同样可以通过消息队列重试来解决。而在并发的场景下,读+写并发对业务没有影响或者影响较小,而写+写并发时需要配合分布式锁的使用,才能保证缓存和数据库的一致性

另外,读写缓存模式由于会同时更新数据库和缓存,优点是,缓存中一直会有数据,如果更新操作后会立即再次访问,可以直接命中缓存,能够降低读请求对于数据库的压力(没有了只读缓存的删除缓存导致缓存缺失和再加载的过程)。缺点是,如果更新后的数据,之后很少再被访问到,会导致缓存中保留的不是最热的数据,缓存利用率不高(只读缓存中保留的都是热数据),所以读写缓存比较适合用于读写相当的业务场景。

标签: none

添加新评论